Adherence to antihypertensive treatment among African migrants and Portuguese natives: results from a primary care-based cohort study in Lisbon, Portugal

Diana Souto, Milene Fernandes, Rui Simões, Violeta Alarcão, Verónica Lopes, Elisa Lopes, Paulo Nicola, Evangelista Rocha

dsouto@fm.ul.pt

06-09-2012
Hypertension is a major public health problem

- One in three adults worldwide has high blood pressure (BP) (WHO, 2012)

- Affects more than 50% of the Portuguese population above 45 years (Macedo, 2005)

- 60-80% of medicated hypertensive patients do not achieve normal BP levels (Mant, 2006)

- Nonadherence is a significant, often unrecognized, risk factor that contributes to inadequate control of BP (Morgado, 2012)
BACKGROUND

Medication Adherence

![Diagram of five dimensions of adherence]

HYPERTENSIVE IMMIGRANTS

Higher risk of non-adherence?

- Social integration
- Migration phenomenon
- Self-designated race/ethnicity

Figure 1. The five dimensions of adherence

OBJECTIVES

This study aims to answer the following questions:

1. Are there differences in patient adherence to antihypertensive medication between African migrants and Portuguese natives?

2. Which are the associated factors?
METHODS – POPULATION AND DATA COLLECTION

- Primary Care Health Centers of Lisbon and Tagus Valley Health Region
- Medicated hypertensive patients
- Aged ≥ 40 years-old and ≤80 years-old
- Natives : Migrants from Portuguese speaking African countries (1:1)
 (Angola, Cape Verde, Guinea-Bissau, Mozambique and São Tomé and Príncipe)

Random sample of 787 subjects

Data collection (face-to-face interviews)
- Demographic characteristics
- Disease-related variables
- Self-reported adherence to aHT drugs
- BP measurements
STUDY DESIGN

DIMATCH-HTA Study

Medicated Hypertensive Patients

Portuguese natives

African migrants

Baseline interview

Phone interview

Face-to-face interview

Month 3

Month 9

baseline Month 6 Month 12

Sep 2010 – Mar 2011
ADHERENCE

Intentional nonadherence - all patients who answered “yes” to at least one question from 3 to 7.

1. did you ever forget to take your blood pressure medication?
2. are you careless at times about taking your medications?
3. have you ever stopped taking your high blood pressure medication by your initiative because you felt better?
4. have you ever stopped taking your high blood pressure by your initiative because you felt worse?
5. have you increased the dose of your high blood pressure medication by your initiative because you felt worse?
6. have you ever stopped taking your high blood pressure medication because you run out of blood pressure medication?
7. did you ever stop taking your high blood pressure medication for any other reason besides doctors indication?
1. To compare the proportion of non-adherents between the two groups, assuming adherence as a dichotomized variable ($\alpha=0.05$).

\rightarrow Bivariate Analysis
2. **Binary Logistic Regression Model**

 → To assess baseline factors associated with medication adherence, for each group.

Patients-related factors
- Age
- Sex
- Education
- Strategies for remembering to take the medication

Condition-related factors
- Hypertension duration
- Comorbidities
- BP control

Social/economic factors
- Number of people with whom the patient lives
- Health insurance
- Having help to control hypertension
- Financial difficulties in buying the medication

Therapy related factors
- Number of medicines at baseline
- Number of aHT medicines at baseline
- Adverse drug reaction
- Number of years under antihypertensive medication (aHT)
RESULTS - PARTICIPANTS CHARACTERIZATION

<table>
<thead>
<tr>
<th>Variable</th>
<th>Natives (n= 449)</th>
<th>African migrants (n= 338)</th>
<th>Significant differences (Compared with African migrants...)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (mean ± SD)</td>
<td>64.1±9.1</td>
<td>56.8±10.1</td>
<td>Natives are 7.3 yrs older</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex, % men</td>
<td>48.8</td>
<td>33.4</td>
<td>More 15.4% of native men</td>
<td><0.001*</td>
</tr>
<tr>
<td>Education, yrs (mean±SD)</td>
<td>6.76±4.1</td>
<td>6.46±4.5</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>Hypertension duration, yrs (mean±SD)</td>
<td>13.91±10.9</td>
<td>12.49±10.9</td>
<td>-</td>
<td>0.04</td>
</tr>
<tr>
<td>Number of aHT drug classes (mean±SD)</td>
<td>1.71±0.9</td>
<td>1.79±0.9</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>Number of baseline drug classes (mean±SD)</td>
<td>4.86±2.7</td>
<td>4.52±2.9</td>
<td>More 0.34 drug classes than African migrants</td>
<td>0.014</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>24.7</td>
<td>26.4</td>
<td>-</td>
<td>0.57*</td>
</tr>
<tr>
<td>Check blood pressure regularly, %</td>
<td>49.8</td>
<td>38.5</td>
<td>More 11.3% of natives that measure BP regularly</td>
<td>0.002*</td>
</tr>
<tr>
<td>Systolic BP, mmHg (mean±SD)</td>
<td>141.10±20.3</td>
<td>141.4±23.5</td>
<td>-</td>
<td>0.76</td>
</tr>
<tr>
<td>Diastolic BP, mmHg (mean ±SD)</td>
<td>83.70±11.8</td>
<td>88.34±13.15</td>
<td>Natives have a mean diastolic BP 4.6 mmHg lower</td>
<td><0.001</td>
</tr>
<tr>
<td>BP control, %</td>
<td>47.1</td>
<td>45.4</td>
<td>-</td>
<td>0.64*</td>
</tr>
</tbody>
</table>

*p, p-value for Mann-Whitney test, except * for the chi-square test*
RESULTS - ADHERENCE TO ANTIHYPERTENSIVE MEDICATION

→ Proportion of adherents and non-adherents between the two groups

- Adherent
 - Natives: 52.6%
 - African Migrants: 34.7%

- Non-adherent
 - Natives: 47.4%
 - African Migrants: 65.3%

\(p = <0.001 \)
RESULTS - ADHERENCE TO ANTIHYPERTENSIVE MEDICATION

Proportion of unintentional and intentional non-adherents between the two groups

$p = <0.001$
RESULTS - FACTORS ASSOCIATED WITH ADHERENCE

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>CI 95%</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portuguese natives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female sex</td>
<td>1.60</td>
<td>(1.01 - 2.55)</td>
<td>0.05</td>
</tr>
<tr>
<td>Main Occupation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>1.00</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.45</td>
<td>(0.18 - 1.14)</td>
<td>0.09</td>
</tr>
<tr>
<td>Retired</td>
<td>1.36</td>
<td>(0.82 - 2.25)</td>
<td>0.23</td>
</tr>
<tr>
<td>Other situation</td>
<td>0.35</td>
<td>(0.08 - 1.53)</td>
<td>0.16</td>
</tr>
<tr>
<td>Financial difficulties in buying the medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not difficult</td>
<td>1.00</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Somewhat difficult</td>
<td>0.65</td>
<td>(0.33 – 1.29)</td>
<td>0.22</td>
</tr>
<tr>
<td>Very difficult</td>
<td>0.41</td>
<td>(0.20 – 0.84)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

African migrants			
Have help of someone to control hypertension	0.18	(0.05 – 0.62)	0.01
Check BP regularly	2.09	(1.22 – 3.61)	0.01

OR, odds ratio estimation by logistic regression analysis; CI, confidence interval
STRENGTHS AND WEAKNESSES

- Large and probabilistic sample study – Immigrant Cohort

- Use of validated measure to assess medication adherence

- Adherence was measured only by self-report:
 - Overestimation of adherence
 - Social desirability bias

- Patients who agreed to participate may be more likely to be adherent than those who refused to participate.
 - Underestimation of the true impact of non-adherence on outcome
CONCLUSIONS

▪ **African migrants** seemed to be less **adherent to medication** and more **intentional non-adherent** than natives.

▪ Factors associated with adherence were **different between the two groups**:

 Natives: sex and have financial difficulties in buying the medication

 African migrants: Have help of someone to control hypertension and check BP regularly

▪ In other **studies sex, race and financial difficulties** where also related to antihypertensive medication adherence.

▪ Future analysis should explore and elucidate these factors
ACKNOWLEDGMENTS

▪ To the Primary Care Health Centers, General Practitioners and Participants of the DIMATCH-HTA for the collaboration on the study.

▪ Research team of DIMATCH-HTA study.

▪ To all the collaborators involved in data collection.

The DIMATCH-HTA study (PTDC/SAU-ESA/103511/2008) is supported by the Portuguese Science and Technology Foundation and we received an unrestricted grant of the Portuguese AstraZeneca Foundation, with the scientific support from the Portuguese Association of General Practitioners.

Thank you!

dsouto@fm.ul.pt